DataHerb:
Geonames Postal Codes and Geocoordinates
• [ #Geo ]
DataHerb Metadata
- DataHerb ID:
geonames_postal_codes_geocoordinates
- DataHerb Name: Geonames Postal Codes and Geocoordinates
- Contributors: Datumorphism
- Description: Postal codes and their geocoordinates parsed from geonames data. The dataset covers the following countries: AD, AR, AS, AT, AU, AX, AZ, BD, BE, BG, BM, BR, BY, CA, CH, CL, CO, CR, CZ, DE, DK, DO, DZ, EE, ES, FI, FM, FO, FR, GB, GF, GG, GL, GP, GT, GU, HR, HU, IE, IM, IN, IS, IT, JE, JP, KR, LI, LK, LT, LU, LV, MC, MD, MH, MK, MP, MQ, MT, MW, MX, MY, NC, NL, NO, NZ, PH, PK, PL, PM, PR, PT, PW, RE, RO, RS, RU, SE, SG, SI, SJ, SK, SM, TH, TR, UA, US, UY, VA, VI, WF, YT, ZA.
- GitHub Repository: datumorphism/geonames-postal-codes-geocoordinates
DataHerb Leaves: Files in Dataset
-
File:
- Format: csv
- Size: 23M
Fields
- country_code: Alpha 2 country code where the postal code is affiliated with
- postal_code: postal code in string format
- latitude: latitude of the postal code
- longitude: longitude of the postal code
Preview
Import Data
=IMPORTDATA("https://raw.githubusercontent.com/datumorphism/geonames-postal-codes-geocoordinates/master/dataset/postal_codes_and_coordinates.csv")
import pandas as pd
url = "https://raw.githubusercontent.com/datumorphism/geonames-postal-codes-geocoordinates/master/dataset/postal_codes_and_coordinates.csv"
df = pd.read_csv(url)
-
File:
- Format: json
- Size: 69M
Fields
- country_code: alpha 2 country code the postal code belongs
- postal_code: postal code in string format
- latitude: latitude of the postal code
- longitude: longitude of the postal code
Import Data
import pandas as pd
url = "https://raw.githubusercontent.com/datumorphism/geonames-postal-codes-geocoordinates/master/dataset/postal_codes_and_coordinates.json"
df = pd.read_json(url)
References: